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1. Introduction

In high energy collisions, perturbative Quantum Chromodynamics (pQCD) successfully

predicts inclusive energy spectra of particles in jets. They have been determined within the

Modified Leading Logarithmic Approximation (MLLA) [1, 2] as functions of the logarithm

of the energy (ln(1/x)) and the result is in nice agreement with the data of — e+e− and

hadronic — colliders and of deep inelastic scattering (DIS) (see for example [3 – 5]). Though

theoretical predictions have been derived for small x (energy fraction of one parton inside

the jet, x ¿ 1),1 the agreement turns out to hold even for x ∼ 1. The shape of the inclusive

spectrum can even be successfully described by setting the infrared transverse momentum

cutoff Q0 as low as the intrinsic QCD scale ΛQCD (this is the so-called “limiting spectrum”).

This work concerns the production of two hadrons inside a high energy jet (quark

or gluon); they hadronize out of two partons at the end of a cascading process that we

calculate in pQCD; considering this transition as a “soft” process is the essence of the

“Local Parton Hadron Duality” (LPHD) hypothesis [1, 6, 7], that experimental data have,

up to now, not put in jeopardy.

More specifically, we study, in the MLLA scheme of resummation, the double differ-

ential inclusive 1-particle distribution and the inclusive k⊥ distribution as functions of the

transverse momentum of the emitted hadrons; they have up to now only been investigated

in DLA (Double Logarithmic Approximation) [1]. After giving general expressions valid at

all x, we are concerned in the rest of the paper with the small x region (the range of which

is extensively discussed) where explicit analytical formulæ can be obtained; we furthermore

consider the limit Q0 ≈ ΛQCD, which leads to tractable results. We deal with jets of small

aperture; as far as hadronic colliders are concerned, this has in particular the advantage to

avoid interferences between ingoing and outgoing states.

The paper is organized as follows:

• The description of the process, the notations and conventions are presented in sec-

tion 2. We set there the general formula of the inclusive 2-particle differential cross

section for the production of two hadrons h1 and h2 at angle Θ within a jet of opening

angle Θ0, carrying respectively the fractions x1 and x2 of the jet energy E; the axis

of the jet is identified with the direction of the energy flow.

1As the exact solution of the MLLA evolution equations
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• In section 3, we determine the double differential inclusive 1-particle distribution
d2N

d ln(1/x1) d ln Θ for the hadron h1 emitted with the energy fraction x1 of the jet energy

E, at an angle Θ with respect to the jet axis. This expression is valid for all x; it

however only simplifies for x ¿ 1, where an analytical expression can be obtained;

this concerns the rest of the paper.

• In section 4, we go to the small x region and determine d2N
d ln(1/x1) d lnΘ , x1 ¿ 1 both

for a gluon jet and for a quark jet. It is plotted as a function of ln k⊥ (or ln Θ) for

different values of `1 = ln(1/x1); the role of the opening angle Θ0 of the jet is also

considered; we compare in particular the MLLA calculation with a naive approach,

inspired by DLA calculations, in which furthermore the evolution of the starting jet

from Θ0, its initial aperture, to the angle Θ between the two outgoing hadrons is not

taken into account.

The MLLA expressions of the average gluon and quark color currents 〈C〉g and 〈C〉q
involve potentially large corrections with respect to their expressions at leading order;

the larger the (small) x domain extends, the larger they are; keeping then under

control sets the bound ` ≡ ln 1
x ≥ 2.5.

• In section 5, we study the inclusive k⊥ distribution dN
d lnk⊥

, which is the integral of
d2N

dx1 d ln Θ with respect to x1; It is shown in particular how MLLA corrections ensure

its positivity. The domain of validity of our predictions is discussed; it is a k⊥
interval, limited by the necessity of staying in the perturbative regime and the range

of applicability of our small x approximation; it increases with the jet hardness. The

case of mixed gluon and quark jets is evoked.

• A conclusion briefly summarizes the results of this work and comments on its exten-

sions under preparation.

Five appendices complete this work;

• Appendix A is dedicated to the MLLA evolution equation for the partonic fragmen-

tation functions Dg or q
g and their exact solutions [8, 9]. They are plotted, together

with their derivatives with respect to ln(1/x) and ln k⊥. This eases the understanding

of the figures in the core of the paper and shows the consistency of our calculations.

• Appendix B presents the explicit expressions at leading order for the average color

currents of partons 〈C〉A0
.

• Appendix C completes section 4 and appendix B by providing explicit formulæ nec-

essary to evaluate the MLLA corrections δ〈C〉A0
to the average color currents;

• While the core of the paper mainly give results for LHC, appendix D provides an

overview at LEP and Tevatron energies. It is shown how, considering too large values

of x (ln 1
x < 2) endanger the positivity of d2N

d` d lnk⊥
at low k⊥. Curves are also given for

dN
d lnk⊥

; the range of applicability of our approximation is discussed in relation with

the core of the paper.
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Figure 1: Process under consideration: two hadrons h1 and h2 inside one jet.

• In appendix E, we compare the DLA and MLLA approximations for the spectrum, the

double differential 1-particle inclusive distribution, and the inclusive k⊥ distribution.

2. The process under consideration

It is depicted in figure 1. In a hard collision, a parton A0 is produced, which can be a

quark or a gluon.2 A0, by a succession of partonic emissions (quarks, gluons), produces a

jet of opening angle Θ0, which, in particular, contains the parton A; A splits into B and

C, which hadronize respectively into the two hadrons h1 and h2 (and other hadrons). Θ is

the angle between B and C.

Because the virtualities of B and C are much smaller than that of A [10], Θ can be

considered to be close to the angle between h1 and h2 [10, 11]; angular ordering is also a

necessary condition for this property to hold.

A0 carries the energy E. With a probability DA
A0

, it gives rise to the (virtual) parton

A, which carries the fraction u of the energy E; ΦBC
A (z) is the splitting function of A into B

and C, carrying respectively the fractions uz and u(1−z) of E; h1 carries the fraction x1 of

E; h2 carries the fraction x2 of E; Dh1

B

(

x1

uz , uzEΘ, Q0

)

and Dh2

C

(

x2

u(1−z) , u(1 − z)EΘ, Q0

)

are their respective energy distributions.

One has Θ ≤ Θ0. On the other hand, since k⊥ ≥ Q0 (Q0 is the collinear cutoff), the

emission angle must satisfy Θ ≥ Θmin = Q0/(xE), x being the fraction of the energy E

carried away by this particle (see also subsection 2.1 below).

The following expression for the inclusive double differential 2-particle cross section

has been demonstrated in [10, 11]:

dσ

dΩjet dx1 dx2 d ln
(

sin2 Θ
2

) dϕ
2π

=

(

dσ

dΩjet

)

0

∑

A,B,C

∫

du

u2

∫

dz

[

1

z(1 − z)

αs(k
2
⊥)

4π

ΦBC
A (z)DA

A0
(u,EΘ0, uEΘ) Dh1

B

(x1

uz
, uzEΘ, Q0

)

2In p−p or p− p̄ collisions, two partons collide which can create A0 either as a quark or as a gluon; in the

deep inelastic scattering (DIS) and in e+e− colliders, a vector boson (γ or Z) decays into a quark-antiquark

pair, and A0 is a quark (or an antiquark).
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Dh2

C

(

x2

u (1 − z)
, u(1 − z)EΘ, Q0

)

]

, (2.1)

where
(

dσ
dΩjet

)

0
is the Born cross section for the production of A0, Ωjet is the solid angle of

the jet and ϕ is the azimuthal angle between B and C.

αs(q
2) is the QCD running coupling constant:

αs(q
2) =

4π

4Nc β ln q2

Λ2
QCD

, (2.2)

where ΛQCD ≈ a few hundred MeV is the intrinsic scale of QCD and

β =
1

4Nc

(

11

3
Nc −

4

3
TR

)

(2.3)

is the first term in the perturbative expansion of the β-function, Nc is the number of colors,

TR = nf/2, where nf is the number of light quark flavors (nf = 3); it is convenient to scale

all relevant parameters in units of 4Nc.

In (2.1), the integrations over u and z are performed from 0 to 1; the appropriate

step functions ensuring uz ≥ x1, u(1 − z) ≥ x2 (positivity of energy) are included in Dh1

B

and Dh2

C .

2.1 Notations and variables

The notations and conventions, that are used above and throughout the paper are the

following. For any given particle with 4-momentum (k0, ~k), transverse momentum k⊥ ≥ Q0

(k⊥ is the modulus of the trivector ~k⊥), carrying the fraction x = k0/E of the jet energy

E, one defines

` = ln
E

k0
= ln(1/x), y = ln

k⊥
Q0

. (2.4)

Q0 is the infrared cutoff parameter (minimal transverse momentum).

If the radiated parton is emitted with an angle ϑ with respect to the direction of the

jet, one has

k⊥ = |~k| sin ϑ ≈ k0 sin ϑ. (2.5)

The r.h.s. of (2.5) uses |~k| ≈ k0, resulting from the property that the virtuality k2 of

the emitted parton is negligible in the logarithmic approximation. For collinear emissions

(ϑ ¿ 1), k⊥ ∼ |~k|ϑ ≈ k0ϑ.

One also defines the variable Yϑ

Yϑ = ` + y = ln

(

E
k⊥
k0

1

Q0

)

≈ ln
Eϑ

Q0
; (2.6)

to the opening angle Θ0 of the jet corresponds

YΘ0
= ln

EΘ0

Q0
; (2.7)

– 5 –
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EΘ0 measures the “hardness” of the jet. Since ϑ < Θ0, one has the condition, valid for

any emitted soft parton off its “parent”

Yϑ < YΘ0
. (2.8)

The partonic fragmentation function Db
a(xb, Q, q) represents the probability of finding

the parton b having the fraction xb of the energy of a inside the dressed parton a; the

virtuality (or transverse momentum) k2
a of a can go up to |Q2|, that of b can go down to |q2|.

2.2 The jet axis

The two quantities studied in the following paragraphs (double differential 1-particle inclu-

sive distribution and inclusive k⊥ distribution) refer to the direction (axis) of the jet, with

respect to which the angles are measured. We identify it with the direction of the energy

flow.

The double differential 1-particle inclusive distribution d2N
dx1d ln Θ is accordingly defined

by summing the inclusive double differential 2-particle cross section over all h2 hadrons and

integrating it over their energy fraction x2 with a weight which is the energy (x2) itself ; it

measures the angular distribution of an outgoing hadron h1 with energy fraction x1 of the

jet energy, produced at an angle Θ with respect to the direction of the energy flow.

Once the axis has been fixed, a second (unweighted) integration with respect to the

energy of the other hadron (x1) leads to the inclusive k⊥ distribution dN
d lnk⊥

.

3. Double differential 1-particle inclusive distribution d2N
dx1 d lnΘ

After integrating trivially over the azimuthal angle (at this approximation the cross-section

does not depend on it), and going to small Θ, the positive quantity d2N
dx1 d ln Θ reads

d2N

dx1 d ln Θ
=

∑

h2

∫ 1

0
dx2 x2

dσ

dΩjet dx1 dx2 d ln Θ

1
(

dσ
dΩjet

)

0

. (3.1)

We use the energy conservation sum rule [12]

∑

h

∫ 1

0
dxxDh

C(x, . . .) = 1 (3.2)

expressing that all partons h2 within a dressed parton (C) carry the total momentum of

C, then make the change of variable v = x
u(1−z) where u(1−z) is the upper kinematic limit

for x2, to get

∑

h2

∫ u(1−z)

0
dx2 x2D

h2

C

(

x2

u(1 − z)
, u(1 − z)EΘ, Q0

)

= u2(1 − z)2, (3.3)

and finally obtain the desired quantity;

d2N

dx1 d ln Θ
=

∑

A,B

∫

du

∫

dz
1 − z

z

αs

(

k2
⊥

)

2π
ΦB

A(z)DA
A0

(u,EΘ0, uEΘ) Dh1

B

(x1

uz
, uzEΘ, Q0

)

;

(3.4)

the summation index C has been suppressed since knowing A and B fixes C.

– 6 –
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We can transform (3.4) by using the following trick:

∫

du

∫

dz

z
(1 − z) =

∫

du

∫

dz

z
−

∫

d(uz)

∫

du

u
, (3.5)

and (3.4) becomes

d2N

dx1 d ln Θ
=

∑

A

∫

duDA
A0

(u,EΘ0, uEΘ)
∑

B

∫

dz

z

αs

(

k2
⊥

)

2π
ΦB

A(z)Dh1

B

(x1

uz
, uzEΘ, Q0

)

−
∑

B

∫

d(uz)Dh1

B

(x1

uz
, uzEΘ, Q0

)

∑

A

∫

du

u

αs(k
2
⊥)

4π
ΦB

A

(uz

u

)

DA
A0

(u,EΘ0, uEΘ). (3.6)

We then make use of the two complementary DGLAP (see also the beginning of section 4)

evolution equations [13] which contain the Sudakov form factors dA and dB of the partons

A and B respectively:

d−1
A (k2

A)
d

d ln k2
A

[

dA(k2
A)Dh1

A

(x1

u
, uEΘ, Q0

)]

=

=
αs(k

2
⊥)

4π

∑

B

∫

dz

z
ΦB

A (z) Dh1

B

(x1

uz
, uzEΘ, Q0

)

, (3.7)

dB(k2
B)

d

d ln k2
B

[

d−1
B (k2

B)DB
A0

(w,EΘ0, wEΘ)
]

=

= −αs(k
2
⊥)

4π

∑

A

∫

du

u
ΦB

A

(w

u

)

DA
A0

(u,EΘ0, uEΘ); (3.8)

the variable uz occurring in (3.5) has been introduced; in (3.7) and (3.8), (uEΘ)2 refers

respectively to the virtualities k2
A and k2

B of A and B. Using (3.7) and (3.8), (3.6) transforms

into

d2N

dx1 d ln Θ
=

∑

A

∫

duDA
A0

(u,EΘ0, uEΘ)d−1
A (k2

A)
d

d ln k2
A

[

dA(k2
A)Dh1

A

(x1

u
, uEΘ, Q0

)]

(3.9)

+
∑

B

∫

dw Dh1

B

(x1

w
,wEΘ, Q0

)

dB(k2
B)

d

d ln k2
B

[

d−1
B (k2

B)DB
A0

(w,EΘ0, wEΘ)
]

.

Dh1

A depends on the virtuality of A through the variable [1] ∆ξ = ξ(k2
A) − ξ(Q2

0) =

1
4Ncβ ln

(

ln(k2
A

/Λ2
QCD

)

ln(Q2
0/Λ2

QCD
)

)

and elementary kinematic considerations [10] lead to k2
A ∼ (uEΘ)2.

By renaming B → A and w → u, (3.9) finally becomes

d2N

dx1 d ln Θ
=

∑

A

∫

du

[

DA
A0

(u,EΘ0, uEΘ)d−1
A (k2

A)
d

d ln Θ

[

dA(k2
A)Dh1

A

(x1

u
, uEΘ, Q0

)]

+Dh1

A

(x1

u
, uEΘ, Q0

)

dA(k2
A)

d

d ln Θ

[

d−1
A (k2

A)DA
A0

(u,EΘ0, uEΘ)
]

]

– 7 –



J
H
E
P
0
4
(
2
0
0
6
)
0
4
3

=
∑

A

d

d ln Θ

[
∫

duDA
A0

(u,EΘ0, uEΘ) Dh1

A

(x1

u
, uEΘ, Q0

)

]

, (3.10)

and one gets
d2N

dx1 d ln Θ
=

d

d ln Θ
F h1

A0
(x1,Θ, E,Θ0) (3.11)

with

F h1

A0
(x1,Θ, E,Θ0) ≡

∑

A

∫

duDA
A0

(u,EΘ0, uEΘ) Dh1

A

(x1

u
, uEΘ, Q0

)

; (3.12)

F defined in (3.12) is the inclusive double differential distribution in x1 and Θ with

respect to the energy flux (the energy fraction of the hadron h1 within the registered energy

flux) and is represented by the convolution of the two functions DA
A0

and Dh
A.

The general formula (3.11) is valid for all x1; its analytical expression in the small x1

region will be written in the next section.

4. Soft approximation (small-x1) for d2N
d`1 d lnk⊥

At `1 fixed, since y1 = ln(k⊥/Q0) and Y = ln(EΘ/Q0) = `1 + y1, dy1 = d ln k⊥ = d ln Θ

and we write hereafter d2N
d`1 d lnk⊥

or d2N
d`1 dy1

instead of d2N
d`1 d lnΘ .

Since the u-integral (3.12) is dominated by u = O(1),3 the DGLAP [1] partonic distri-

butions DA
A0

(u, . . .) are to be used and, since, on the other hand, we restrict to small x1,

x1/u ¿ 1 and the MLLA inclusive Dh1

A ((x1/u), . . .) are requested. The latter will be taken

as the exact solution (see [8]) of the (MLLA) evolution equations that we briefly sketch

out, for the sake of completeness, in appendix A. MLLA evolution equations accounts

for the constraints of angular ordering (like DLA but unlike DGLAP equations) and of

energy-momentum conservation (unlike DLA).

For soft hadrons, the behavior of the function Dh1

A (x1, EΘ, Q0) at x1 ¿ 1 is [1]

Dh1

A (x1, EΘ, Q0) ≈
1

x1
ρh1

A

(

ln
1

x1
, ln

EΘ

Q0
≡ YΘ

)

, (4.1)

where ρh1

A is a slowly varying function of two logarithmic variables that describes the

“hump-backed” plateau.

For Dh1

A

(

x1

u , uEΘ, Q0

)

occurring in (3.12), this yields

Dh1

A

(x1

u
, uEΘ, Q0

)

≈ u

x1
ρh1

A

(

ln
u

x1
, ln u + YΘ

)

. (4.2)

Because of (2.6), one has

ρh
A(`, YΘ) = ρh1

A (`, ` + y) = D̃h
A(`, y), (4.3)

3Dh1

A

`

x1

u
, uEΘ, Q0

´

≈ (u/x1)× (slowly varying function) — see (4.2) — and the most singular possible

behavior of DA
A0

(u, EΘ0, uEΘ, Q0), which could enhance the contribution of small u, is ∼ 1/u; however,

the integrand then behaves like Const. × (slowly varying function) and the contribution of small u to the

integral is still negligible.

– 8 –
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and, in what follows, we shall always consider the functions

xDA(x,EΘ, Q0) = D̃A(`, y). (4.4)

The expansion of ρh1

A

(

ln u
x1

, ln u + YΘ

)

around u = 1 (ln u = ln 1) reads

x1

u
Dh1

A

(x1

u
, uEΘ, Q0

)

= ρh1

A (`1 + ln u, YΘ + ln u) = ρh1

A (`1 + ln u, y1 + `1 + lnu) (4.5)

= D̃h1

A (`1 + ln u, y1) = D̃h1

A (`1, y1) + ln u
d

d`1
D̃h1

A (`1, y1) + · · · ,

such that

x1F
h1

A0
(x1,Θ, E,Θ0) ≈

∑

A

∫

du uDA
A0

(u,EΘ0, uEΘ)

(

D̃h1

A (`1, y1) + lnu
dD̃h1

A (`1, y1)

d`1

)

=
∑

A

[
∫

duuDA
A0

(u,EΘ0, uEΘ)

]

D̃h1

A (`1, y1)

+
∑

A

[
∫

duu ln uDA
A0

(u,EΘ0, uEΘ)

]

dD̃h1

A (`1, y1)

d`1
; (4.6)

the second line in (4.6) is the O(1) main contribution; the third line, which accounts for the

derivatives, including the variation of αs, makes up corrections of relative order O(
√

αs)

with respect to the leading terms (see also (4.17)), which have never been considered before;

since, in the last line of (4.6), u ≤ 1 ⇒ ln u ≤ 0 and
dD̃

h1
A

d`1
is positive (see appendix A.4),

the corresponding correction is negative. A detailed discussion of all corrections is made

in subsections 4.1 and 4.4

It is important for further calculations that (3.12) has now factorized.

While (3.12) (4.6) involve (inclusive) hadronic fragmentation functions D̃h1

A = D̃h1
g

or D̃h1
q , the MLLA partonic functions D̃b

A(`, y) satisfy the evolution equations (A.2) with

exact solution (A.8), demonstrated in [8] and recalled in appendix A. The link between

the latter (D̃g
g , D̃g

q , D̃q
g, D̃q

q) and the former goes as follows. At small x, since quarks are

secondary products of gluons, for a given “parent”, the number of emitted quarks is a

universal function of the number of emitted gluons: the upper indices of emitted partons

are thus correlated, and we can replace in (4.6) the inclusive fragmentation functions by

the partonic ones, go to the functions D̃A(`, y), where the upper index (which we will omit)

is indifferently g or q, and rewrite

x1F
h1

A0
(x1,Θ, E,Θ0) ≈

∑

A

(

〈u〉AA0
+ δ〈u〉AA0

ψA,`1(`1, y1)
)

D̃A(`1, y1), (4.7)

with4

〈u〉AA0
=

∫ 1

0
duuDA

A0
(u,EΘ0, uEΘ) ≈

∫ 1

0
duuDA

A0
(u,EΘ0, EΘ) ,

4In (4.8), u is integrated form 0 to 1, while, kinematically, it cannot get lower than x1; since we are

working at small x1, this approximation is reasonable.
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δ〈u〉AA0
=

∫ 1

0
du (u ln u)DA

A0
(u,EΘ0, uEΘ) ≈

∫ 1

0
du(u ln u)DA

A0
(u,EΘ0, EΘ) , (4.8)

and

ψA,`1(`1, y1) =
1

D̃A(`1, y1)

dD̃A(`1, y1)

d`1
. (4.9)

Thus, for a gluon jet

x1F
h1
g (x1,Θ, E,Θ0) ≈ 〈u〉ggD̃g(`1, y1) + 〈u〉qgD̃q(`1, y1)

+δ〈u〉ggψg,`1(`1, y1)D̃g(`1, y1)

+δ〈u〉qgψq,`1(`1, y1)D̃q(`1, y1), (4.10)

and for a quark jet

x1F
h1
q (x1,Θ, E,Θ0) ≈ 〈u〉gqD̃g(`1, y1) + 〈u〉qqD̃q(`1, y1)

+δ〈u〉gqψg,`1(`1, y1)D̃g(`1, y1)

+δ〈u〉qqψq,`1(`1, y1)D̃q(`1, y1). (4.11)

It turns out (see [1]) that the MLLA corrections to the formulæ

D̃g
q ≈ CF

Nc
D̃g

g , D̃q
q ≈ CF

Nc
D̃q

g, (4.12)

do not modify the results and we use (4.12) in the following. We rewrite accordingly (4.10)

and (4.11)

x1F
h1
g (x1,Θ, E,Θ0) ≈

〈C〉0g + δ〈C〉g
Nc

D̃g(`1, y1) ≡
〈C〉g
Nc

D̃g(`1, y1),

x1F
h1
q (x1,Θ, E,Θ0) ≈

〈C〉0q + δ〈C〉q
Nc

D̃g(`1, y1) ≡
〈C〉q
Nc

D̃g(`1, y1), (4.13)

with

〈C〉0g = 〈u〉ggNc + 〈u〉qgCF ,

〈C〉0q = 〈u〉gqNc + 〈u〉qqCF , (4.14)

and where we have called

δ〈C〉g = Nc δ〈u〉ggψg,`1(`1, y1) + CF δ〈u〉qgψq,`1(`1, y1),

δ〈C〉q = Nc δ〈u〉gqψg,`1(`1, y1) + CF δ〈u〉qqψq,`1(`1, y1). (4.15)

〈C〉A0
is the average color current of partons caught by the calorimeter.

Plugging (4.13) into (3.11) yields the general formula

(

d2N

d`1 d ln k⊥

)

q,g

=
d

dy1

[〈C〉q,g

Nc
D̃g(`1, y1)

]

(4.16)
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The first line of (4.10) and (4.11) are the leading terms, the second and third lines are

corrections. Their relative order is easily determined by the following relations (see (A.3)

for the definition of γ0)

d2N

d`1 d ln k⊥
=

〈C〉q,g

Nc

d

dy1
D̃g(`1, y1) +

1

Nc
D̃g(`1, y1)

d

dy1
〈C〉q,g,

d

dy1
D̃g(`1, y1) = O(γ0) = O(

√
αs),

d

dy1
〈C〉q,g = O(γ2

0) = O(αs); (4.17)

The different contributions are discussed in subsections 4.1 and 4.4 below.

• dD̃g(`,y)
d lnk⊥

≡ dD̃g(`,y)
dy (see the beginning of this section) occurring in (4.16) is plotted

in figure 12 and 13 of appendix A, and
dD̃g(`,y)

d` occurring in (4.7) (4.9) is plotted in

figures 14 and 15.

• The expressions for the leading terms of x1F
h1

A0
(x1,Θ, E,Θ0) together with the ones

of 〈C〉0g and 〈C〉0q are given in appendix B.

• The calculations of δ〈C〉g and δ〈C〉q are detailed in appendix C, where the explicit

analytical expressions for the 〈u〉’s and δ〈u〉’s are also given.

We call “naive” the approach” in which one disregards the evolution of the jet between

Θ0 and Θ; this amounts to taking to zero the derivative of 〈C〉q,g in (4.16); (B.2), (B.3),

(B.4) then yield

〈C〉naive
g = Nc, 〈C〉naive

q = CF . (4.18)

4.1 The average color current 〈C〉A0

On figure 2 below, we plot, for YΘ0
= 7.5, 〈C〉0q , 〈C〉0q + δ〈C〉q , 〈C〉0g, 〈C〉0g + δ〈C〉g as

functions of y, for ` = 2.5 on the left and ` = 3.5 on the right. Since Θ ≤ Θ0, the

curves stop at y such that y + ` = YΘ0
; they reach then their respective asymptotic values

Nc for 〈C〉g and CF for 〈C〉q, at which δ〈C〉q and δ〈C〉g also vanish (see also the naive

approach (4.18)). These corrections also vanish at y = 0 because they are proportional

to the logarithmic derivative (1/D̃(`, y))(dD̃(`, y)/d`) (see (4.15)) which both vanish, for

q and g, at y = 0 (see appendix A, and figures 16–17); there, the values of 〈C〉g and 〈C〉q
can be determined from (B.2)(B.3).

The curves corresponding to LEP and Tevatron working conditions, YΘ0
= 5.2, are

shown in appendix D.

Two types of MLLA corrections arise in our calculation, which are easily visualized on

figure 2:

• through the expansion (4.5) around u = 1, the average color current 〈C〉0A0
gets

modified by δ〈C〉A0
≤ 0 of relative order O(

√
αs); it is represented on figure 2 by the

vertical difference between the straight lines (〈C〉0A0
) and the curved ones (〈C〉0A0

+

δ〈C〉A0
);
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Figure 2: 〈C〉0A0
and 〈C〉0A0

+ δ〈C〉A0
for quark and gluon jets, as functions of y, for YΘ0

= 7.5,

` = 2.5 on the left and ` = 3.5 on the right.

• the derivative of 〈C〉0A0
with respect to y is itself of relative order O(

√
αs) with respect

to that of D̃g; it is the slopes of the straight lines in figure 2.

The y derivatives of 〈C〉0A0
+ δ〈C〉A0

differ from the ones of the leading 〈C〉0A0
; this

effect combines the two types of MLLA corrections mentioned above: the derivation of 〈C〉
with respect to y and the existence of δ〈C〉.

For YΘ0
= 7.5, the δ〈C〉 correction can represent 50% of 〈C〉g at ` = 2.5 and y ≈ 1.5; for

higher values of ` (smaller x), as can be seen on the right figure, its importance decreases;

it is remarkable that, when δ〈C〉 is large, the corrections to d〈C〉
dy with respect to d〈C〉0

dy

become small, and vice-versa: at both extremities of the curves for the color current, the

δ〈C〉 corrections vanish, but their slopes are very different from the ones of the straight

lines corresponding to 〈C〉0.
So, all corrections that we have uncovered are potentially large, even dδ〈C〉

dy , which is

the y derivative of a MLLA corrections. This raises the question of the validity of our

calculations. Several conditions need to be fulfilled at the same time:

• one must stay in the perturbative regime, which needs y1 ≥ 1 (k⊥ > 2.72ΛQCD ≈
.7GeV; this condition excludes in particular the zone of very large increase of d2N

d`1 d lnk⊥

when y1 → 0 (this property is linked to the divergence of the running coupling

constant of QCD αs(k
2
⊥) → ∞ when k⊥ → ΛQCD).

• x must be small, that is ` large enough, since this is the limit at which we have

obtained analytical results; we see on figure 2 that it cannot go reasonably below

` = 2.5; this lower threshold turns out to be of the same order magnitude as the one

found in the forthcoming study of 2-particle correlations inside one jet in the MLLA

approximation [9];

• (MLLA) corrections to the leading behavior must stay under control (be small

“enough”); if one only looks at the size of the δ〈C〉 corrections at YΘ0
= 7.5, it would

be very tempting to exclude y ∈ [.5, 2.5]; however this is without taking into account

the y derivatives of 〈C〉, which also play an important role, as stressed above; our
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Figure 3: d2N
d`1 d ln k⊥

for a gluon jet.

attitude, which will be confirmed or not by experimental results, is to only globally

constrain the overall size of all corrections by setting x small enough.

Would the corrections become excessively large, the development (4.5) should be

pushed one step further, which corresponds to next-to-MLLA (NMLLA) corrections; this

should then be associated with NMLLA evolution equations for the inclusive spectrum,

which lies out of the scope of the present work.

Though δ〈C〉 can be large, specially at small values of `, the positivity of 〈C〉0 + δ〈C〉
is always preserved on the whole allowed range of y.

The difference between the naive and MLLA calculations lies in neglecting or not the

evolution of the jet between Θ0 and Θ, or, in practice, in considering or not the average

color current 〈C〉A0
as a constant.

We present below our results for a gluon and for a quark jet. We choose two values

YΘ0
= 7.5, which can be associated with the LHC environment,5 and the unrealistic YΘ0

=

10 (see appendix D for YΘ0
= 5.2 and 5.6, corresponding to the LEP and Tevatron working

conditions). For each value of YΘ0
we make the plots for two values of `1, and compare

one of them with the naive approach.

In the rest of the paper we always consider the limiting case Q0 → ΛQCD ⇔ λ ≈ 0,

λ = ln
Q0

ΛQCD
. (4.19)

4.2 d2N
d`1 d ln k⊥

at small x1: gluon jet

On figure 3 below is plotted the double differential distribution d2N
d`1 d lnk⊥

of a parton inside

a gluon jet as a function of y1 for different values of `1 (fixed).

On figure 4 are compared, for a given value of `1, the two following cases:

• the first corresponds to the full formulæ (4.13) (4.16);

5Sharing equally the 14TeV of available center of mass energy between the six constituent partons of the

two colliding nucleons yields E ≈ 2.3 TeV by colliding parton, one considers a jet opening angle of Θ ≈ .25

and Q0 ≈ ΛQCD ≈ 250 MeV; this gives Y = ln EΘ
Q0

≈ 7.7.
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Figure 4: d2N
d`1 d ln k⊥

for a gluon jet at fixed `1, MLLA and naive approach.
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Figure 5: d2N
d`1 d lnk⊥

for a quark jet.

• the second corresponds to the naive approach (see the definition above (4.18))

(

d2N

d`1 d ln k⊥

)naive

g

=
d

dy1
D̃g(`1, y1); (4.20)

dD̃g(`1,y1)
dy1

is given in (A.12).

The raise of the distribution at large k⊥ is due to the positive corrections already

mentioned in the beginning of this section, which arise from the evolution of the jet between

Θ and Θ0.

4.3 d2N
d`1 d ln k⊥

at small x1: quark jet

On figure 5 is plotted the double differential distribution d2N
d`1 d lnk⊥

of a parton inside a

quark jet as a function of y1 for different values of `1 (fixed).

On figure 6 are compared, for a given `1 fixed, the full formulæ (4.13) (4.16) and the

naive approach
(

d2N

d`1 d ln k⊥

)naive

q

=
CF

Nc

d

dy1
D̃g(`1, y1). (4.21)
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Figure 6: d2N
d`1 d ln k⊥

for a quark jet at fixed `1, MLLA and naive approach.

We note, like for gluon jets, at large y, a (smaller) increase of the distribution, due to

taking into account the jet evolution between Θ and Θ0.

4.4 Comments

The gluon distribution is always larger than the quark distribution; this can also be traced

in figure 2 which measures in particular the ratio of the color currents 〈C〉g/〈C〉q.
The curves for d2N

d`1 d ln k⊥
have been drawn for `1 ≡ ln(1/x1) ≥ 2.5; going below this

threshold exposes to excessively large MLLA corrections.

The signs of the two types of MLLA corrections pointed at in subsection 4.1 vary with

y: δ〈C〉 always brings a negative correction to 〈C〉0, and to d2N
d`1 d lnk⊥

; for y ≥ 1.5, the

slope of 〈C〉 is always larger that the one of 〈C〉0, while for y ≤ 1.5 it is the opposite. It

is accordingly not surprising that, on figures 4 and 6, the relative positions of the curves

corresponding to the MLLA calculation and to a naive calculation change with the value

of y. At large y, one gets a growing behavior of d2N
d`1 d ln k⊥

for gluon jets (figure 4), and a

slowly decreasing one for quark jets (figure 6), which could not have been anticipated a

priori.

We study in appendix E.2, how MLLA results compare with DLA [14, 15], in which

the running of αs has been “factored out”.

5. Inclusive k⊥ distribution dN
d ln k⊥

Another quantity of interest is the inclusive k⊥ distribution which is defined by

(

dN

d ln k⊥

)

g or q

=

∫

dx1

(

d2N

dx1 d ln k⊥

)

g or q

≡
∫ YΘ0

−y

`min

d`1

(

d2N

d`1 d ln k⊥

)

g or q

; (5.1)

it measures the transverse momentum distribution of one particle with respect to the

direction of the energy flow (jet axis).

We have introduced in (5.1) a lower bound of integration `min because our calculations

are valid for small x1, that is for large `1. In a first step we take `min = 0, then vary it to

study the sensitivity of the calculation to the region of large x1.
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We plot below the inclusive k⊥ distributions for gluon and quark jets, for the same

two values YΘ0
= 7.5 and YΘ0

= 10 as above, and compare them, on the same graphs, with

the “naive calculations” of the same quantity.

5.1 Gluon jet; `min = 0
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Figure 7: dN
d lnk⊥

for a gluon jet, MLLA and naive approach, for `min=0, YΘ0
= 7.5 and YΘ0

= 10.
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Figure 8: Enlargements of figure 7 at large k⊥.

5.2 Quark jet; `min = 0
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Figure 9: dN
d lnk⊥

for a quark jet, MLLA and naive approach, for `min=0, YΘ0
= 7.5 and YΘ0

= 10.
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Figure 10: Enlargements of figure 9 at large k⊥.

5.3 Role of the lower limit of integration `min

To get an estimate of the sensitivity of the calculation of dN
d ln k⊥

to the lower bound of

integration in (5.1), we plot in figure 11 below the two results obtained at YΘ0
= 7.5 for

`min = 2 and `min = 0, for a gluon jet (left) and a quark jet (right).

The shapes of the corresponding distributions are identical; they only differ by a ver-

tical shift which is small in the perturbative region y ≥ 1 (restricting the domain of inte-

gration — increasing `min — results as expected in a decrease of dN
d ln k⊥

). This shows that,

though our calculation is only valid at small x1, the sensitivity of the final result to this

parameter is small.

5.4 Discussion

MLLA corrections are seen on figure 8 and figure 10 to cure the problems of positivity

which occur in the naive approach.

The range of `1 integration in the definition (5.1) of dN
d lnk⊥

should be such that, at

least, its upper bound corresponds to x1 small enough; we have seen in the discussion

of MLLA corrections to the color current in subsection 4.1 that one should reasonably

consider `1 ≥ 2.5; at fixed YΘ0
this yields the upper bound y1 ≤ YΘ0

− 2.5, that is, at LHC

y1 ≤ 5.
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Figure 11: dN
d ln k⊥

with `min = 2 and `min = 0 for gluon (left) and quark (right) jet.
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On the other side, the perturbative regime we suppose to start at y1 ≥ 1. These

mark the limits of the interval where our calculation can be trusted 1 ≤ y1 ≤ 5 at LHC.

For y1 < 1 non-perturbative corrections will dominate, and for y1 > YΘ0
− `min

1 ≈ YΘ0
−

2.5, the integration defining dN
d ln k⊥

ranges over values of x1 which lie outside our small x

approximation and for which the MLLA corrections become accordingly out of control.

On the curves of figures 7 and 9 at YΘ0
= 10, the small y region exhibits a bump

which comes from the competition between two phenomena: the divergence of αs(k
2
⊥)

when k⊥ → Q0 and coherence effects which deplete multiple production at very small

momentum. The separation of these two effects is still more visible at YΘ0
= 15, which

is studied in appendix E.3, where a comparison with DLA calculations is performed. At

smaller YΘ0
, the divergence of αs wins over coherence effects and the bump disappears.

The curves corresponding to the LEP and Tevatron working conditions are given in

appendix D.

5.4.1 Mixed quark and gluon jets

In many experiments, the nature of the jet (quark or gluon) is not determined, and one

simply detects outgoing hadrons, which can originate from either type; one then introduces

a “mixing” parameter ω, which is to be determined experimentally, such that, for example

if one deals with the inclusive k⊥ distribution
(

dN

d ln k⊥

)

mixed

= ω

(

dN

d ln k⊥

)

g

+ (1 − ω)

(

dN

d ln k⊥

)

q

. (5.2)

It is in this framework that forthcoming data from the LHC will be compared with our

theoretical predictions; since outgoing charged hadrons are detected, one introduces the

phenomenological parameter Kch [1, 7] normalizing partonic distributions to the ones of

charged hadrons
(

dN

d ln k⊥

)ch

= Kch

(

dN

d ln k⊥

)

mixed

. (5.3)

6. Conclusion

After deducing a general formula, valid for all x, for the double differential 2-particle

inclusive cross section for jet production in a hard collision process, the exact solutions of

the MLLA evolution equations [8] have been used to perform a small x calculation of the

double differential 1-particle inclusive distributions and of the inclusive k⊥ distributions

for quark and gluon jets.

Sizable differences with the naive approach in which one forgets the jet evolution

between its opening angle Θ0 and the emission angle Θ have been found; their role is

emphasized to recover, in particular, the positivity of the distributions.

MLLA corrections increase with x and decrease when the transverse momentum k⊥
of the outgoing hadrons gets larger; that they stay “within control” requires in practice

that the small x region should not be extended beyond ` < 2.5; it is remarkable that

similar bounds arise in the study of 2-particle correlations [9]. At fixed YΘ0
, the lower
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bound for ` translates into an upper bound for y; this fixes in particular the upper limit

of confidence for our calculation of dN
d ln k⊥

; above this threshold, though k⊥ is larger (more

“perturbative”), the small x approximation is no longer valid.

The “divergent” behavior of the MLLA distributions for y → 0 forbids extending the

confidence domain of MLLA lower that y ≥ 1, keeping away from the singularity of αs(k
2
⊥)

when k⊥ → ΛQCD.

The two (competing) effects of coherence (damping of multiple production at small

momentum) and divergence of αs(k
2
⊥) at small k⊥ for the inclusive k⊥ distribution have

been exhibited.

MLLA and DLA calculations have been compared; in “modified” MLLA calculations,

we have furthermore factored out the αs dependence to ease the comparison with DLA.

While the goal of this work is a comparison of our theoretical predictions with forth-

coming data from LHC and Tevatron, we have also given results for LEP. LHC energies will

provide a larger trustable domain of comparison with theoretical predictions at small x.

Further developments of this work aim at getting rid of the limit Q0 ≈ ΛQCD and

extending the calculations to a larger range of values of x; then, because of the lack of

analytical expressions, the general formulæ (3.11) and (3.12) should be numerically inves-

tigated, which will also provide a deeper insight into the connection between DGLAP and

MLLA evolution equations [16].
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A. Exact solution of the MLLA evolution equation for the fragmentation

functions; the spectrum and its derivatives

A.1 MLLA evolution equation for a gluon jet

Because of (4.12), we will only write the evolution equations for gluonic fragmentation

functions Db
g.

The partonic structure functions Db
a satisfy an evolution equation which is best written

when expressed in terms of the variables ` and y and the functions D̃b
a defined by [1] (see

also (4.1) (4.3)):

xbD
b
a(xb, ka, q) = D̃b

a(`b, yb). (A.1)

The parton content D̃g of a gluon is shown in [8] to satisfy the evolution equation (Y

and y are linked by (2.6))

D̃g(`, y) = δ(`) +

∫ y

0
dy′

∫ `

0
d`′γ2

0(`′ + y′)
[

1 − aδ(`′−`)
]

D̃g(`
′, y′), (A.2)
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where the anomalous dimension γ0(y) is given by (λ is defined in (4.19))

γ2
0(y) = 4Nc

αs(k
2
⊥)

2π
≈ 1

β(y + λ)
. (A.3)

(see the beginning of section 2 for β, TR, CF , αs, Nc) and

a =
1

4Nc

[

11

3
Nc +

4

3
TR

(

1 − 2CF

Nc

)]

; CF = 4/3 for SU(3)c. (A.4)

The (single logarithmic) subtraction term proportional to a in (A.2) accounts for gluon

→ quark transitions in parton cascades as well as for energy conservation — the so-called

“hard corrections” to parton cascading –.

No superscript has been written in the structure functions Dg because the same equa-

tion is valid indifferently for Dg
g and Dq

g (see section 4). One considers that the same

evolution equations govern the (inclusive) hadronic distributions Dh
g (Local Hadron Par-

ton Duality).

A.2 Exact solution of the MLLA evolution equation for particle spectra

The exact solution of the evolution equation (A.2), which includes constraints of energy

conservation and the running of αs, is demonstrated in [8] to be given by the following

Mellin’s representation

D̃g (`, y, λ) = (` + y + λ)

∫

dω

2πi

∫

dν

2πi
eω`+νy

∫ ∞

0

ds

ν + s

(

ω (ν + s)

(ω + s) ν

)1/(β(ω−ν)) (

ν

ν + s

)a/β

e−λs.

(A.5)

From (A.5) and taking the high energy limit6 ` + y ≡ Y À λ one gets [1, 7] the explicit

formula

D̃g(`, y) =
` + y

βB(B + 1)

∫

dω

2πi
e−ωy Φ

(

A + 1, B + 2, ω(` + y)
)

, (A.6)

where Φ is the confluent hypergeometric function the integral representation of which reads

[17, 18]

Φ(A + 1, B + 2, ωY ) = Γ(B + 2) (ωY )−B−1

∫

dt

(2πi)

t−B

t(t − 1)

(

t

t − 1

)A

eωY t;

with A =
1

βω
, B =

a

β
, Γ(n) =

∫ ∞

0
dχχn−1e−χ. (A.7)

Exchanging the t and ω integrations of (A.6) (A.7) and going from t to the new variable

α = 1
2 ln t

t−1 , (A.6) becomes

D̃g(`, y) = 2
Γ(B)

β
<

(

∫ π
2

0

dτ

π
e−Bα FB(τ, y, `)

)

, (A.8)

6Y À λ ⇔ EΘ À Q2
0/ΛQCD is not strictly equivalent to Q0 → ΛQCD (limiting spectrum).
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Figure 12: Spectrum D̃(`, y) of emitted partons as functions of transverse momentum (left) and

energy (right).
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Figure 13: Spectrum D̃(`, y) of emitted partons as functions of transverse momentum (left) and

energy (right): enlargement of figure 12.

where the integration is performed with respect to τ defined by α = 1
2 ln y

` + iτ ,

FB(τ, y, `) =

[

cosh α − y−`
y+` sinhα

`+y
β

α
sinh α

]B/2

IB(2
√

Z(τ, y, `)),

Z(τ, y, `) =
` + y

β

α

sinhα

(

cosh α − y − `

y + `
sinhα

)

; (A.9)

IB is the modified Bessel function of the first kind.

A.3 The spectrum

On figure 12 below, we represent, on the left, the spectrum as a function of the transverse

momentum (via y) for fixed ` and, on the right, as a function of the energy (via `) for fixed

transverse momentum.

Figure 13 shows enlargements of figure 12 for small values of y and ` respectively;

they ease the understanding of the curves for the derivatives of the spectrum presented in

subsection A.4.
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A comparison between MLLA and DLA calculations of the spectrum is done in ap-

pendix E.1.

A.4 Derivatives of the spectrum

We evaluate below the derivatives of the spectrum w.r.t. ln k⊥ and ln(1/x).

We make use of the following property for the confluent hypergeometric functions Φ

[18]:

d

d`
Φ (A + 1, B + 2, ω (` + y)) ≡ d

dy
Φ (A + 1, B + 2, ω (` + y))

= ω
A + 1

B + 2
Φ (A + 2, B + 3, ω (` + y)) . (A.10)

• We first determine the derivative w.r.t. ` ≡ ln(1/x). Differentiating (A.6) w.r.t. `,

and developing (A.10), one gets7 [8]

d

d`
D̃g (`, y) = 2

Γ(B)

β

∫ π
2

0

dτ

π
e−Bα

[

1

` + y
(1 + 2eα sinhα)FB +

1

β
eαFB+1

]

; (A.11)

• Differentiating w.r.t. y ≡ ln
k⊥
Q0

yields

d

dy
D̃g (`, y) = 2

Γ(B)

β

∫ π
2

0

dτ

π
e−Bα

[

1

` + y
(1 + 2eα sinhα)FB

+
1

β
eαFB+1 −

2 sinh α

` + y
FB−1

]

. (A.12)

In figure 14, figure 15, figure 16 and figure 17 below, we draw the curves for:

• dD̃g(`,y)
dy as a function of y, for different values of ` fixed;

• dD̃g(`,y)
dy as a function of `, for different values of y fixed;

• dD̃g(`,y)
d` as a function of ` for different values of y fixed;

• dD̃g(`,y)
d` as a function of y for different values of ` fixed.

In each case the right figure is an enlargement, close to the origin of axes, of the left

figure.

That
dD̃g(`,y)

dy goes to infinity when y → 0 is in agreement with the analytic behavior

in ln(`/y) of this derivative.

7(A.11) and (A.12) have also been checked by numerically differentiating (A.8).
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Figure 14:
dD̃g(`,y)

dy
as a function of y for different values of `.
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dD̃g(`,y)
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as a function of ` for different values of y.
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Figure 16:
dD̃g(`,y)

d`
as a function of ` for different values of y.

B. Leading contributions to x1F
h1

A0
(x1, Θ, E, Θ0) at small x1

Using (4.12), the leading terms of x1F
h1

A0
(x1,Θ, E,Θ0) (4.6) calculated at small x1 read

x1F
h1
g (x1,Θ, E,Θ0)

0 ≈ D̃g(`1, y1)

(

〈u〉gg +
CF

Nc
〈u〉qg

)

=
〈C〉0g
Nc

D̃g(`1, y1),
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Figure 17:
dD̃g(`,y)

d`
as a function of y for different values of `.

x1F
h1
q (x1,Θ, E,Θ0)

0 ≈ D̃g(`1, y1)

(

〈u〉gq +
CF

Nc
〈u〉qq

)

=
〈C〉0q
Nc

D̃g(`1, y1). (B.1)

The leading 〈C〉0g and 〈C〉0q in (4.14) for a quark and a gluon jet are given respectively

by (see [1], chapt. 98)

〈C〉0q = 〈C〉∞ − c1 (Nc − CF )

(

ln (EΘ/ΛQCD)

ln (EΘ0/ΛQCD)

)(c3/4Ncβ)

= 〈C〉∞ − c1 (Nc − CF )

(

YΘ + λ

YΘ0
+ λ

)(c3/4Ncβ)

, (B.2)

〈C〉0g = 〈C〉∞ + c2 (Nc − CF )

(

ln (EΘ/ΛQCD)

ln (EΘ0/ΛQCD)

)(c3/4Ncβ)

= 〈C〉∞ + c2 (Nc − CF )

(

YΘ + λ

YΘ0
+ λ

)(c3/4Ncβ)

, (B.3)

with

〈C〉∞ = c1Nc + c2 CF ,

c1 =
8

3

CF

c3
, c2 = 1 − c1 =

2

3

nf

c3
, c3 =

8

3
CF +

2

3
nf ; (B.4)

in the r.h.s of (B.2) (B.3) we have used the definitions (2.6) (2.7). 〈C〉∞ corresponds to

the limit E → ∞,Θ → 0.

In practice, we take in this work

Q0 ≈ ΛQCD ⇔ λ ≈ 0, (B.5)

which ensures in particular the consistency with the analytical calculation of the MLLA

spectrum (appendix A), which can only be explicitly achieved in this limit.

8The coefficient β, omitted in the exponents of eqs. (9.12a), (9.12b), (9.12c) of [1] has been restored

here. The factor 4Nc is due to our normalization (see the beginning of section 2).
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C. Calculation of δ〈C〉g and δ〈C〉q of section 4

C.1 Explicit expressions for 〈u〉AA0
and δ〈u〉AA0

defined in (4.8)

The expressions (4.8) for 〈u〉AA0
and δ〈u〉AA0

are conveniently obtained from the Mellin-

transformed DGLAP fragmentation functions [1]

D(j, ξ) =

∫ 1

0
duuj−1D(u, ξ), (C.1)

which, if one deals with DB
A(u, r2, s2), depends in reality on the difference ξ(r2) − ξ(s2):

ξ(Q2) =

∫ Q2

µ2

dk2

k2

αs(k
2)

4π
, ξ(r2) − ξ(s2) ≈ 1

4Ncβ
ln

(

ln(r2/Λ2
QCD)

ln(s2/Λ2
QCD)

)

. (C.2)

One has accordingly

〈u〉AA0
= DA

A0
(2, ξ(EΘ0) − ξ(EΘ)), δ〈u〉AA0

=
d

dj
DA

A0
(j, ξ(EΘ0) − ξ(EΘ))

∣

∣

∣

j=2
. (C.3)

The DGLAP functions D(j, ξ) are expressed [1] in terms of the anomalous dimensions

νF (j), νG(j) and ν±(j), the j dependence of which is in particular known.

For the sake of completeness, we give below the expressions for the 〈u〉’s and δ〈u〉’s.

〈u〉qg =
9

25

(

(

YΘ0
+ λ

YΘ + λ

)
50
81

− 1

)

(

YΘ0
+ λ

YΘ + λ

)− 50
81

,

〈u〉gg = 1/25

(

16

(

YΘ0
+ λ

YΘ + λ

)
50
81

+ 9

)

(

YΘ0
+ λ

YΘ + λ

)− 50
81

,

〈u〉gq =
16

25

(

(

YΘ0
+ λ

YΘ + λ

)
50
81

− 1

)

(

YΘ0
+ λ

YΘ + λ

)− 50
81

,

〈u〉seaq = −1/25

(

−9

(

YΘ0
+ λ

YΘ + λ

)
50
81

− 16 + 25

(

YΘ0
+ λ

YΘ + λ

)2/9
)

(

YΘ0
+ λ

YΘ + λ

)− 50
81

,

〈u〉val =

(

YΘ0
+ λ

YΘ + λ

)− 32
81

,

〈u〉seaq + 〈u〉val = 1/25

(

9

(

YΘ0
+ λ

YΘ + λ

)
50
81

+ 16

)

(

YΘ0
+ λ

YΘ + λ

)− 50
81

;

δ〈u〉qg = − 1

337500

(

−43011

(

YΘ0
+ λ

YΘ + λ

)
50
81

+ 43011 − 6804π2

(

YΘ0
+ λ

YΘ + λ

)
50
81

+6804π2 − 48600 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50
81

+21600 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50
81

π2 + 109525 ln

(

YΘ0
+ λ

YΘ + λ

)
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−17400 ln

(

YΘ0
+ λ

YΘ + λ

)

π2

)(

YΘ0
+ λ

YΘ + λ

)− 50
81

,

δ〈u〉gg = − 1

337500

(

−11664

(

YΘ0
+ λ

YΘ + λ

)
50
81

+ 31104π2

(

YΘ0
+ λ

YΘ + λ

)
50
81

−86400 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50
81

+38400 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50
81

π2

+11664 − 31104π2 − 109525 ln

(

YΘ0
+ λ

YΘ + λ

)

+17400 ln

(

YΘ0
+ λ

YΘ + λ

)

π2

)(

YΘ0
+ λ

YΘ + λ

)− 50
81

,

δ〈u〉gq = − 4

759375

(

48114

(

YΘ0
+ λ

YΘ + λ

)
50
81

− 48114 − 6804π2

(

YΘ0
+ λ

YΘ + λ

)
50
81

+6804π2 − 48600 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50
81

+21600 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50
81

π2 + 109525 ln

(

YΘ0
+ λ

YΘ + λ

)

−17400 ln

(

YΘ0
+ λ

YΘ + λ

)

π2

)(

YΘ0
+ λ

YΘ + λ

)− 50
81

,

δ〈u〉seaq =
2

759375

(

−13122

(

YΘ0
+ λ

YΘ + λ

)
50
81

+ 34992π2

(

YΘ0
+ λ

YΘ + λ

)
50
81

+54675 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50
81

−24300 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50
81

π2

+13122 − 34992π2 + 219050 ln

(

YΘ0
+ λ

YΘ + λ

)

− 34800 ln

(

YΘ0
+ λ

YΘ + λ

)

π2

−265625 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)2/9

+37500 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)2/9

π2

)

(

YΘ0
+ λ

YΘ + λ

)− 50
81

,

δ〈u〉val = − 2

243

(

−85 + 12π2
)

ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)− 32
81

,

δ〈u〉val + δ〈u〉seaq = − 2

759375

(

13122

(

YΘ0
+ λ

YΘ + λ

)
50
81

− 34992π2

(

YΘ0
+ λ

YΘ + λ

)
50
81
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(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50
81

+24300 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50
81

π2 − 13122 + 34992π2

−219050 ln

(

YΘ0
+ λ

YΘ + λ

)

+ 34800 ln

(

YΘ0
+ λ

YΘ + λ

)

π2

)(

YΘ0
+ λ

YΘ + λ

)− 50
81

.(C.4)

When Θ → Θ0, all δ〈u〉’s vanish, ensuring that the limits ξ(EΘ0)− ξ(EΘ) → 0 of the

(〈C〉0A0
+ δ〈C〉A0

)’s are the same as the ones of the 〈C〉0A0
’s.

C.2 δ〈C〉q and δ〈C〉g
They are given in (4.15), and one uses (4.12) such that only ψg,`1 (see (4.9)) appears.

Their full analytical expressions for the δ〈C〉’s are too complicated to be easily written and

manipulated.

Using the formulæ of C.1, one gets the approximate results

δ〈C〉q ≈
(

1.4676 − 1.4676

(

YΘ0
+ λ

YΘ + λ

)− 50
81

− 3.2510 ln

(

YΘ0
+ λ

YΘ + λ

)

+0.5461

(

YΘ0
+ λ

YΘ + λ

)− 50
81

ln

(

YΘ0
+ λ

YΘ + λ

)

)

ψg,`1(`1, y1), (C.5)

and

δ〈C〉g ≈
(

−2.1898 + 2.1898

(

YΘ0
+ λ

YΘ + λ

)− 50
81

− 3.2510 ln

(

YΘ0
+ λ

YΘ + λ

)

−0.3072

(

YΘ0
+ λ

YΘ + λ

)− 50
81

ln

(

YΘ0
+ λ

YΘ + λ

)

)

ψg,`1(`1, y1). (C.6)

The logarithmic derivative ψg,`1(`1, y1) (4.9) of the MLLA spectrum D̃g(`1, y1) is ob-

tained from (A.8) of appendix A.

D. At LEP and Tevatron

At LEP energy, the working conditions correspond to YΘ0
≈ 5.2; they are not very different

at the Tevatron where YΘ0
≈ 5.6. We first present the curves for LEP, then, after the dis-

cussion concerning the size of the corrections and the domain of validity of our calculations,

we give our predictions for the Tevatron.

D.1 The average color current

Owing to the size of the (MLLA) corrections to the 〈C〉’s and their y derivatives, we will

keep to the lower bound `1 ≥ 2.5.
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Figure 18: 〈C〉0A0
and 〈C〉0A0

+ δ〈C〉A0
for quark and gluon jets, as functions of y, for YΘ0

= 5.2,

` = 1.5 on the left and ` = 2.5 on the right.
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Figure 19: d2N
d`1 d ln k⊥

for a gluon jet at fixed `1, MLLA and naive approach.

D.2 d2N
d`1 d lnk⊥

for a gluon jet

We plot below d2N
d`1 d lnk⊥

for the two values ` = 1.5 and ` = 2.5.

The excessive size of the δ〈C〉 corrections emphasized in subsection D.1 translates here

into the loss of the positivity for d2N
d`1 d ln k⊥

at ` = 1.5 for y < 1: our approximation is clearly

not trustable there.

D.3 d2N
d`1 d lnk⊥

for a quark jet

We consider the same two values of ` as above.

Like for the gluon jet, we encounter positivity problems at ` = 1.5 for y < 1.25.

D.4 dN
d ln k⊥

for a gluon jet

We plot below dN
d ln k⊥

for a gluon jet obtained by the “naive” approach and including the

jet evolution from Θ0 to Θ; on the right is an enlargement which shows how positivity is

recovered when MLLA corrections are included.
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for a gluon jet, MLLA and naive approach.
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Figure 22: dN
d ln k⊥

for a quark jet, MLLA and naive approach.

D.5 dN
d ln k⊥

for a quark jet

We proceed like for a gluon jet. The curves below show the restoration of positivity by

MLLA corrections.

That the upper bound of the `1 domain of integration defining dN
d ln k⊥

corresponds to

a large enough `1 ≥ 2.5 requires that, for LEP, y1 should be smaller that 5.2 − 2.5 = 2.7;
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for a gluon (left) and a quark (right) jets, MLLA predictions for the Tevatron.

combined with the necessity to stay in the perturbative regime, it yields 1 ≤ y1 ≤ 2.7.

D.6 Discussion and predictions for the Tevatron

The similar condition at Tevatron is 1 ≤ y1 ≤ 5.6 − 2.5 = 3.1; like for LEP, it does not

extend to large values of k⊥ because, there, the small x approximation is no longer valid.

We give below the curves that we predict in this confidence interval.

Since experimental results involve a mixture of gluon and quark jets, the mixing param-

eter ω (subsection 5.4.1) has to be introduced in the comparison with theoretical curves,

together with the phenomenological factor Kch normalizing partonic to charge hadrons

distributions.

E. Comparing DLA and MLLA approximations

DLA [14, 15] and MLLA approximations are very different [1]; in particular, the exact

balance of energy (recoil effects of partons) is not accounted for in DLA.

We compare DLA and MLLA results for the two distributions of concern in this work.

Studying first their difference for the spectrum itself eases the rest of the comparison.

We choose the two values YΘ0
= 7.5 and YΘ0

= 15. While the first corresponds to

the LHC working conditions (see footnote 5), the second is purely academic since, taking

for example Θ0 ≈ .5 and Q0 ≈ 250 MeV , it corresponds to an energy of 1635 TeV ; it is

however suitable, as we shall see in subsection E.3 to disentangle the effects of coherence

and the ones of the divergence of αs at low energy in the calculation of the inclusive k⊥
distribution.

E.1 The spectrum

Fixing αs in DLA at the largest scale of the process, the collision energy, enormously damps

the corresponding spectrum (it does not take into account the growing of αs accompanying

parton cascading), which gives an unrealistic aspect to the comparison.

This is why, as far as the spectra are concerned, we shall compare their MLLA evalu-

ation with that obtained from the latter by taking to zero the coefficient a given in (A.4),
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Figure 24: The spectrum D̃g(`, YΘ0
− `) for gluon jets; comparison between MLLA and DLA

(“with running αs”) calculations.

which also entails B = 0; F0(τ, y, `) in (A.9) becomes I0(2
√

Z(τ, y.`). The infinite normal-

ization that occurs in (A.8) because of Γ(B = 0) we replace by a constant such that the two

calculations can be easily compared. This realizes a DLA approximation (no accounting

for recoil effects) “with running αs”.

On figure 24 below are plotted the spectrum D̃g(`, y ≡ YΘ0
− `) for gluon jets in the

MLLA and DLA “with running αs” approximations.

The peak of the MLLA spectrum is seen, as expected, to occur at smaller values of

the energy than that of DLA.

E.2 Double differential 1-particle inclusive distribution

The genuine MLLA calculations being already shown on figures 3 and 5, figure 25 displays,

on the left, a “modified” MLLA calculation obtained by dividing by αs(k
2
⊥) ≈ π

2Ncβy

(see (A.3) with λ → 0); subtracting in the MLLA calculations the dependence on k⊥ due

to the running of αs(k
2
⊥) allows a better comparison with DLA (with fixed αs) by getting

rid of the divergence when k⊥ → Q0.

On the right are plotted the DLA results for gluon jets, in which αs has been fixed at

the collision energy (it is thus very small). Since their normalizations are now different,

only the shapes of the two types of curves must be compared; we indeed observe that the

DLA growing of d2N
d`1 d ln k⊥

with k⊥ (or y1) also occurs in the “modified” MLLA curves.

The DLA distribution for quark jets is obtained from that of gluon jets by multiplica-

tion by the factor CF /Nc; it it thus also a growing function of y1.

The MLLA distribution for quark jets, which is, unlike that for gluon jets, a decreasing

function of y1 (see figure 6), becomes, like the latter, growing, after the dependence on

αs(k
2
⊥) has been factored out: one finds the same behavior as in DLA.

E.3 Inclusive k⊥ distribution

On figure 26 we have plotted, at YΘ0
= 7.5:
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Figure 26: YΘ0
= 7.5: comparing MLLA and DLA calculations of dN

d ln k⊥

(see also figure 7); from
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αs(k2

T
)
MLLA and DLA (αs fixed).

• the MLLA calculation of dN
d ln k⊥

divided by αs(k
2
⊥), such that the divergence due to

the running of αs has been factored out, leaving unperturbed the damping due to

coherence effects;

• the DLA calculation of dN
d ln k⊥

with αs fixed at the collision energy.

Like in E.2, because of the division by αs, the two curves are not normalized alike,

such that only their shapes should be compared.

The comparison of the DLA curve (at fixed αs) with the genuine MLLA calculation

displayed in figure 7 (left) shows how different are the outputs of the two approximations;

while at large k⊥ they are both decreasing, at small k⊥ the running of αs makes the sole

MLLA distribution diverge when k⊥ → Q0 (non-perturbative domain).

In the extremely high domain of energy YΘ0
= 15 used for figure 27, the two competing

phenomena occurring at small y1 can then be neatly distinguished.

The first plot, showing MLLA results, cleanly separates coherence effects from the

running of αs; in the second figure we have plotted the MLLA calculation divided by
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αs(k
2
⊥): damping at small y1 due to coherence effects appears now unspoiled; finally, DLA

calculations clearly exhibit, too, the damping due to coherence.9

The large difference of magnitude observed between the first (genuine MLLA) and the

last (DLA) plots occurs because DLA calculations have been performed with αs fixed at

the very high collision energy.

Like in E.2, because of the division by αs, the second curve is not normalized like the

two others, such that only its shape should be compared with theirs.
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